900=-16t^2+1900

Simple and best practice solution for 900=-16t^2+1900 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 900=-16t^2+1900 equation:



900=-16t^2+1900
We move all terms to the left:
900-(-16t^2+1900)=0
We get rid of parentheses
16t^2-1900+900=0
We add all the numbers together, and all the variables
16t^2-1000=0
a = 16; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·16·(-1000)
Δ = 64000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{64000}=\sqrt{6400*10}=\sqrt{6400}*\sqrt{10}=80\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{10}}{2*16}=\frac{0-80\sqrt{10}}{32} =-\frac{80\sqrt{10}}{32} =-\frac{5\sqrt{10}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{10}}{2*16}=\frac{0+80\sqrt{10}}{32} =\frac{80\sqrt{10}}{32} =\frac{5\sqrt{10}}{2} $

See similar equations:

| +2x+5+x=25 | | 6.87+2.33y=8.34-1.41y | | 9(j-95)=36 | | 120-9x=18 | | -10=2u+-2 | | x=13=180 | | 6=-5x+7+4 | | w/4+16=14 | | 1.25=2.5b | | 6.5z-0.5(6z+12)=-8+2(1.5z-4) | | 5x+45+25=180 | | 0.5-(3-x)=6.4 | | 4x+40=14x+70 | | 6.5z-1/2(6z+12)=-8+2(1.5z-4) | | 5x+45+25=118 | | 7(-2+2)=4x-40 | | 144=`12z | | 4s-10=-2 | | 10x=3/10 | | 10x+7-6x+9=4x+16 | | 3(4x+5)-2+6x=5-(2-7x) | | -6(3x-2)=4 | | 8(y=2)=48 | | -2(w-4)=20 | | v^2-4v+71=9 | | 3/10x=10 | | 3/10-10=x | | 10x-12=7x+2 | | 20000-1000x-100x^2=0 | | 5(-4x+4)=180 | | 3(x-6)+6=5x+2 | | 5(2x+7)=41 |

Equations solver categories